نتيجة البحث
- تاسي
-
الطاقة
- 2222 - أرامكو السعودية
- 2030 - المصافي
- 2380 - بترو رابغ
- 4030 - البحري
- 4200 - الدريس
- 2381 - الحفر العربية
- 2382 - أديس
- 1201 - تكوين
- 1202 - مبكو
- 1210 - بي سي آي
- 1211 - معادن
- 1301 - أسلاك
- 1304 - اليمامة للحديد
- 1320 - أنابيب السعودية
- 2001 - كيمانول
- 2010 - سابك
- 2020 - سابك للمغذيات الزراعية
- 2090 - جبسكو
- 2150 - زجاج
- 2170 - اللجين
- 2180 - فيبكو
- 2200 - أنابيب
- 2210 - نماء للكيماويات
- 2220 - معدنية
- 2240 - الزامل للصناعة
- 2250 - المجموعة السعودية
- 2290 - ينساب
- 2300 - صناعة الورق
- 2310 - سبكيم العالمية
- 2330 - المتقدمة
- 2350 - كيان السعودية
- 3002 - أسمنت نجران
- 3003 - أسمنت المدينة
- 3004 - أسمنت الشمالية
- 3005 - أسمنت ام القرى
- 3010 - أسمنت العربية
- 3020 - أسمنت اليمامة
- 3030 - أسمنت السعودية
- 3040 - أسمنت القصيم
- 3050 - أسمنت الجنوب
- 3060 - أسمنت ينبع
- 3080 - أسمنت الشرقية
- 3090 - أسمنت تبوك
- 3091 - أسمنت الجوف
- 3092 - أسمنت الرياض
- 2060 - التصنيع
- 3008 - الكثيري
- 3007 - الواحة
- 1321 - أنابيب الشرق
- 1322 - أماك
- 2223 - لوبريف
- 2360 - الفخارية
- 1212 - أسترا الصناعية
- 1302 - بوان
- 1303 - الصناعات الكهربائية
- 2040 - الخزف السعودي
- 2110 - الكابلات السعودية
- 2160 - أميانتيت
- 2320 - البابطين
- 2370 - مسك
- 4140 - صادرات
- 4141 - العمران
- 4142 - كابلات الرياض
- 1214 - شاكر
- 4110 - باتك
- 4143 - تالكو
- 4270 - طباعة وتغليف
- 6004 - كاتريون
- 1832 - صدر
- 1831 - مهارة
- 1833 - الموارد
- 1834 - سماسكو
- 1835 - تمكين
- 4031 - الخدمات الأرضية
- 4040 - سابتكو
- 4260 - بدجت السعودية
- 2190 - سيسكو القابضة
- 4261 - ذيب
- 4263 - سال
- 4262 - لومي
- 1810 - سيرا
- 6013 - التطويرية الغذائية
- 1820 - بان
- 4170 - شمس
- 4290 - الخليج للتدريب
- 6002 - هرفي للأغذية
- 6017 - جاهز
- 1830 - لجام للرياضة
- 6012 - ريدان
- 4291 - الوطنية للتعليم
- 4292 - عطاء
- 6014 - الآمار
- 6015 - أمريكانا
- 6016 - برغرايززر
- 4003 - إكسترا
- 4008 - ساكو
- 4050 - ساسكو
- 4190 - جرير
- 4240 - سينومي ريتيل
- 4191 - أبو معطي
- 4051 - باعظيم
- 4192 - السيف غاليري
- 4001 - أسواق ع العثيم
- 4006 - أسواق المزرعة
- 4061 - أنعام القابضة
- 4160 - ثمار
- 4161 - بن داود
- 4162 - المنجم
- 4164 - النهدي
- 4163 - الدواء
- 2050 - مجموعة صافولا
- 2100 - وفرة
- 2270 - سدافكو
- 2280 - المراعي
- 6001 - حلواني إخوان
- 6010 - نادك
- 6020 - جاكو
- 6040 - تبوك الزراعية
- 6050 - الأسماك
- 6060 - الشرقية للتنمية
- 6070 - الجوف
- 6090 - جازادكو
- 2281 - تنمية
- 2282 - نقي
- 2283 - المطاحن الأولى
- 4080 - سناد القابضة
- 2284 - المطاحن الحديثة
- 2285 - المطاحن العربية
- 2286 - المطاحن الرابعة
- 4002 - المواساة
- 4004 - دله الصحية
- 4005 - رعاية
- 4007 - الحمادي
- 4009 - السعودي الألماني الصحية
- 2230 - الكيميائية
- 4013 - سليمان الحبيب
- 2140 - أيان
- 4014 - دار المعدات
- 4017 - فقيه الطبية
- 1010 - الرياض
- 1020 - الجزيرة
- 1030 - الإستثمار
- 1050 - بي اس اف
- 1060 - الأول
- 1080 - العربي
- 1120 - الراجحي
- 1140 - البلاد
- 1150 - الإنماء
- 1180 - الأهلي
- 2120 - متطورة
- 4280 - المملكة
- 4130 - الباحة
- 4081 - النايفات
- 1111 - مجموعة تداول
- 4082 - مرنة
- 1182 - أملاك
- 1183 - سهل
- 4083 - المتحدة الدولية القابضة
- 8010 - التعاونية
- 8012 - جزيرة تكافل
- 8020 - ملاذ للتأمين
- 8030 - ميدغلف للتأمين
- 8040 - متكاملة
- 8050 - سلامة
- 8060 - ولاء
- 8070 - الدرع العربي
- 8190 - المتحدة للتأمين
- 8230 - تكافل الراجحي
- 8280 - ليفا
- 8150 - أسيج
- 8210 - بوبا العربية
- 8270 - بروج للتأمين
- 8180 - الصقر للتأمين
- 8170 - الاتحاد
- 8100 - سايكو
- 8120 - إتحاد الخليج الأهلية
- 8200 - الإعادة السعودية
- 8160 - التأمين العربية
- 8250 - جي آي جي
- 8240 - تْشب
- 8260 - الخليجية العامة
- 8300 - الوطنية
- 8310 - أمانة للتأمين
- 8311 - عناية
- 8313 - رسن
- 4330 - الرياض ريت
- 4331 - الجزيرة ريت
- 4332 - جدوى ريت الحرمين
- 4333 - تعليم ريت
- 4334 - المعذر ريت
- 4335 - مشاركة ريت
- 4336 - ملكية ريت
- 4338 - الأهلي ريت 1
- 4337 - سيكو السعودية ريت
- 4342 - جدوى ريت السعودية
- 4340 - الراجحي ريت
- 4339 - دراية ريت
- 4344 - سدكو كابيتال ريت
- 4347 - بنيان ريت
- 4345 - الإنماء ريت للتجزئة
- 4346 - ميفك ريت
- 4348 - الخبير ريت
- 4349 - الإنماء ريت الفندقي
- 4350 - الاستثمار ريت
- 4324 - بنان
- 4020 - العقارية
- 4323 - سمو
- 4090 - طيبة
- 4100 - مكة
- 4150 - التعمير
- 4220 - إعمار
- 4230 - البحر الأحمر
- 4250 - جبل عمر
- 4300 - دار الأركان
- 4310 - مدينة المعرفة
- 4320 - الأندلس
- 4321 - سينومي سنترز
- 4322 - رتال
- نمو
-
الإعلام والترفيه
السلع طويلة الأجل
إدارة وتطوير العقارات
إنتاج الأغذية
- 9515 - فش فاش
- 9532 - مياه الجوف
- 9536 - فاديكو
- 9556 - نفوذ
- 9559 - بلدي
- 9564 - آفاق الغذاء
- 9555 - لين الخير
- 9612 - مياه سما
- 9518 - المركز الكندي الطبي
- 9530 - طبية
- 9527 - ألف ميم ياء
- 9544 - الرعاية المستقبلية
- 9546 - نبع الصحة
- 9574 - بروميديكس
- 9594 - المداواة
- 9572 - الرازي
- 9587 - لانا
- 9600 - كومل
- 9604 - ميرال
- 9616 - جنى
- 9620 - بلسم الطبية
- 9513 - حديد وطني
- 9514 - الناقول
- 9523 - جروب فايف
- 9539 - أقاسيم
- 9548 - ابيكو
- 9553 - ملان
- 9565 - معيار
- 9552 - قمة السعودية
- 9563 - بناء
- 9566 - الصناعات الجيرية
- 9580 - الراشد للصناعة
- 9583 - المتحدة للتعدين
- 9576 - منزل الورق
- 9588 - حديد الرياض
- 9575 - ماربل ديزاين
- 9599 - طاقات
- 9601 - الرشيد
- 9605 - نفط الشرق
- 9607 - عسق
- 9609 - بترول ناس
- 9623 - مصنع البتال
- 9510 - الوطنية للبناء والتسويق
- 9528 - جاز
- 9531 - العبيكان للزجاج
- 9533 - المركز الآلي
- 9529 - رؤوم
- 9525 - الوسائل الصناعية
- 9542 - كير
- 9547 - رواسي
- 9568 - ميار
- 9569 - آل منيف
- 9578 - أطلس
- 9560 - وجا
- 9611 - المتحدة للزجاج المسطح
- 9540 - تدوير
- 9545 - الدولية
- 9570 - تام التنموية
- 9581 - كلين لايف
- 9593 - عبر الخليج
- 9597 - الليف
- 9608 - الأشغال الميسرة
- 9606 - ثروة
- 9613 - شلفا
- 9619 - الأعمال المتعددة
- 9621 - دي آر سي
- 9541 - أكاديمية التعلم
- 9562 - بوابة الأطعمة
- 9590 - أرماح
- 9598 - المحافظة للتعليم
- 9603 - الأفق التعليمية
- 9567 - غذاء السلطان
- 9617 - ارابيكا ستار
الدخول
×هل نسيت كلمة السر؟
×- ترتيب البنوك مؤشرات البنوك إحصائيات الأسمنت شركات الأسمنت مؤشرات الأسمنت إحصاءات النقد والإقتصاد النفط والغاز والوقود بيانات الاقتصاد الكلي إنفاق المستهلكين التضخم الصادرات والواردات السلع الغذائية السلع غير الغذائية السلع الانشائية ترتيب البتروكيماويات مؤشرات البتروكيماويات ترتيب التجزئة مؤشرات التجزئة ترتيب المواد الغذائية مؤشرات المواد الغذائية الأعلى نمواً التوزيعات النقدية التاريخية
يبدو أن نماذج اللغة الكبيرة (LLMs)، ستحدث ثورة في كيفية تفكيرنا في الذكاء الاصطناعي وتطبيقاته المحتملة.
يعرف عمالقة التكنولوجيا مثل مايكروسوفت وميتا وجوجل أن نماذج اللغات الكبيرة أصبحت ضرورية للناس للابتكار والأتمتة وتحسين حياة المستخدم النهائي ككل.
ولعل أحد الأمثلة على ذلك هو شات جي بي تي، الذي يستخدم المحول التوليدي المدرّب مسبقًا من شركة أوبن إيه (OpenAI) لإنجاز المهام في بضع ثوانٍ والتي تستغرق عادةً ساعات أو أيامًا.
ولكن أولاً، دعونا نستكشف أساسيات نموذج اللغة الكبيرة وتطبيقاتها في حالات الاستخدام في العالم الحقيقي.
ما النماذج اللغوية الكبيرة؟
- نماذج اللغة الكبيرة هي نماذج تعليم عميق كبيرة جدًا مدرَّبة مسبقًا على كميات هائلة من البيانات. وهي تُستخدم لأغراض إنشاء المحتوى والتلخيص والترجمة والتصنيف وتحليل المشاعر وغير ذلك الكثير.
كيف تعمل نماذج اللغة الكبيرة؟
- لفهم كيفية عمل نماذج اللغة الكبيرة، تحتاج أولاً إلى فهم بنية المحولات. وهي العمود الفقري لنماذج المحولات مثل جي بي تي والكثير من النماذج البارزة الأخرى.
- بنية المحول هي بنية شبكة عصبية تسمح بالمعالجة المتوازية وتستخدمها نماذج لغوية كبيرة لمعالجة البيانات وتوليد استجابات ذات صلة بالسياق.
- وهو يتألف من سلسلة من الطبقات، حيث تتكون كل طبقة من مكونات معالجة متوازية تسمى آليات الانتباه وشبكات التغذية الأمامية.
- تزن آليات الانتباه أهمية كل كلمة، باستخدام النماذج الإحصائية لتعلم العلاقات بين الكلمات ومعانيها. يسمح هذا لنماذج اللغة الكبيرة بمعالجة التسلسلات بالتوازي وتوليد استجابات ذات صلة بالسياق.
ما بعض الأمثلة على النماذج اللغوية الكبيرة؟ |
||
تمثيلات التشفير ثنائية الاتجاه من نماذج المحولات (BERT) |
|
- أحدثت "بيرت" ثورة في البرمجة اللغوية العصبية من خلال فهم السياق ثنائي الاتجاه.
- وهي مصممة لأداء مهام معالجة اللغة الطبيعية مثل تحليل المشاعر والإجابة عن الأسئلة وتصنيف النصوص.
|
المحول التوليدي مسبق التدريب (GPT-3) |
|
- تم تطوير جي بي تي-3 بواسطة شركة أوبن إيه، وهو نموذج لغوي كبير يعد أحد أكثر نماذج الذكاء الاصطناعي تقدمًا في العالم.
- وقد تم تدريبه على كمية هائلة من البيانات النصية ويمكنه توليد استجابات شبيهة بالإنسان لمجموعة واسعة من الموضوعات والأسئلة.
|
النماذج متعددة اللغات (XLM-R) |
|
- هو نموذج لغوي كبير قائم على المحولات تم تدريبه مسبقًا على كمية هائلة من البيانات النصية بلغات متعددة.
- ويتم ضبطه لمهام محددة في البرمجة اللغوية العصبية مثل تصنيف النصوص والترجمة الآلية والإجابة عن الأسئلة.
|
نظام التعرف التلقائي على الكلام واسع النطاق (Whisper) |
|
- يتم تدريب "ويسبر" على 680 ألف ساعة من البيانات المتنوعة والمتعددة اللغات، مما يؤدي إلى تحسين قوة اللهجات والضوضاء في الخلفية واللغة التقنية.
- كما لديه القدرة على نسخ الكلام بلغات متعددة وإجراء الترجمة إلى اللغة الإنجليزية.
|
مستقبل نماذج اللغات متعددة المهام (T5) |
|
- هو نموذج لغوي كبير مصمم لأداء مهام البرمجة اللغوية العصبية المختلفة مثل إنشاء النص إلى نص والتلخيص والترجمة.
- ويُستخدم لضبط قدراته لمهام محددة في البرمجة اللغوية العصبية، مما يجعله نموذجًا متعدد الاستخدامات للغاية.
|
لماذا تعد النماذج اللغوية الكبيرة مهمة جدًا للمؤسسات؟
تتمتع النماذج اللغوية الكبيرة بإمكانات هائلة للمنظمات، ويمكن أن تحدث نقلة نوعية في كيفية عملها.
أهمية النماذج اللغوية الكبيرة للمؤسسات |
|
1- قدرات معالجة اللغة الطبيعية المتقدمة |
- في الماضي، تطلب بناء الذكاء الاصطناعي للمحادثة جهدًا كبيرًا من فريق من الخبراء الذين أمضوا ساعات لا تحصى في إنشاء خوارزميات متعددة للتعلم الآلي.
- ومع ذلك، فإن ظهور نماذج لغوية كبيرة قد غير هذا المشهد.
- بدلاً من استخدام خوارزميات متعددة، يقوم نموذج واحد الآن بتنفيذ جميع الوظائف التي كانت تؤديها أنظمة متعددة في السابق.
|
2- قدرات مذهلة
|
- تمتلك نماذج تعلم اللغة قدرة توليدية مذهلة تجعلها أصولًا قيمة للمؤسسة.
- من خلال قدرات الذكاء الاصطناعي المتقدمة للمحادثة، يمكن لنماذج اللغة الكبيرة مساعدة الشركات في استكشاف أفكار جديدة، وتطوير منتجات وخدمات جديدة، وتحسين المنتجات والخدمات الحالية.
- يمكن لمديري اللغة أيضًا تحليل وفهم كميات كبيرة من البيانات والمعلومات، مما يسمح لهم بتقديم توصيات ثاقبة لتحسين العمليات التجارية وصنع القرار.
- علاوة على ذلك، تسهل واجهة المحادثة الخاصة بنماذج اللغة الكبيرة على فرق العمل المشاركة والتعاون في الأفكار والمشاريع، مما يزيد من الإنتاجية وتبسيط العملية الإبداعية.
|
3- تجربة مستخدم سلسة |
- تقدم نماذج تعلم اللغة تجربة مستخدم محادثة سلسة لا مثيل لها في أنظمة الذكاء الاصطناعي التقليدية.
- يمكن للمؤسسة تسخيرها من خلال دمج نماذج اللغة الكبيرة في التطبيقات التي تواجه العملاء، مثل روبوتات الدردشة، لتحسين الاتصال الداخلي والدعم.
- تسمح أتمتة بعض مهام الدعم من خلال المحادثة للشركات بتوفير موارد قيمة والتركيز على القضايا الأكثر تعقيدًا التي تتطلب خبرة بشرية.
|
ما نقاط ضعف نماذج اللغة الكبيرة؟
هناك نقاط ضعف رئيسية في نموذج اللغة الكبيرة يجب مراعاتها عند التفكير في كيفية تطبيقها عمليًا في مجال الأعمال.
نقاط ضعف نماذج اللغة الكبيرة |
|
1- دقة غير متناسقة |
- تُعد نماذج اللغة الكبيرة، بما في ذلك شات جي بي تي، من الأدوات القوية التي يمكن أن توفر إجابات دقيقة على الأسئلة المعقدة.
- على الرغم من قدراتها المثيرة للإعجاب، لا يزال هناك خطر تقديم ردود غير دقيقة أو خاطئة، والمعروفة باسم "الهلوسة".
- يمكن أن يكون لهذه الظاهرة آثار خطيرة في الصناعات الحيوية مثل الرعاية الصحية والعمليات التجارية.
- لذا، من الضروري تقديم ضمانات مثل الرقابة البشرية لتحسين المدخلات والتحكم في المخرجات للتخفيف من هذه المخاطر.
|
2- بيانات التدريب القديمة |
- يتم تدريب النماذج اللغوية الكبيرة على كميات هائلة من البيانات النصية لفهم اللغة الطبيعية والاستجابة لها بطريقة تشبه الإنسان.
- ومع ذلك، تقتصر بيانات التدريب الخاصة بها على فترة زمنية محددة وقد لا تعكس الوضع الحالي للعالم.
- يُعد تحديث المعرفة أمرًا معقدًا ويتطلب إعادة تدريب النموذج، وهو أمر مكلف للغاية.
- حتى ذلك الحين، ليس هناك ما يضمن أن النموذج لن يوفر معلومات قديمة، حتى لو كان محرك البحث المقترن به يحتوي على معلومات محدثة.
|
3- مخاطر الخصوصية |
- يتم تدريب نماذج اللغة الكبيرة على كميات هائلة من البيانات النصية، بما في ذلك المعلومات الشخصية الحساسة، والتي قد يكون بإمكانها الوصول إليها أثناء توليد الردود.
- وبطبيعة الحال، يمكن تسريب هذه المعلومات الشخصية من خلال مخرجات النموذج أو بيانات التدريب.
- بالإضافة إلى ذلك، قد لا تكون بيانات التدريب المستخدمة لتطوير نماذج اللغة الكبيرة دائمًا مجهولة المصدر أو آمنة بشكل صحيح، مما يزيد من خطر حدوث اختراقات للبيانات الشخصية.
|
المصدر: شركة موف ووركس
تعليقات {{getCommentCount()}}
كن أول من يعلق على الخبر
رد{{comment.DisplayName}} على {{getCommenterName(comment.ParentThreadID)}}
{{comment.DisplayName}}
{{comment.ElapsedTime}}